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68.2 ppm ((CD3)2CO) with JCH = 1 7 1 and JCw = 3 Hz. 
Reasonable structures may be proposed for 1, 2, and 3, as 

shown below. Compound 3 appears entirely analogous to the 
previously known ethylidyne compound H3Os3(CO)9(CCH3).7 
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The structure for 2 incorporates features displayed by 
HOs 3 (CO)Io(CHCH 2 PPhMe 2 ) 8 and H2Os3(CO)9-
(C=CH 2 ) . 9 . 1 0 Although the 1H and 13C NMR signals ob­
served for the bridging methylene in [CpMn(CO)2]2CH2 (T 
1.35,153 ppm) U a are downfield of those for 2, the analogous 
signals for the terminal methylene in Cp2Ta(CH3)(CH2) 
(-0.22, 228 ppm) l l b are even further downfield. The structure 
proposed for 1 is least certain but modeled after that estab­
lished for H2Os3(CO)1 0 .1 2 Alkyl ligands bridging two transi­
tion metals are rare, but not unknown,13 and the upfield posi­
tion of the 1H N M R signal for the methyl ligand in 1 is quite 
distinct from the positions for the methyl groups in the series,14 

HOs(CO)4(CH3), HOs2(CO)8(CH3), and Os3(CO)i2(CH3)2 

(all about T 9.7).15 Studies in progress are aimed at further 
characterizing the structures of 1 and 2 as well as the reactivity 
of all three compounds.20 
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Electron Transfer. 28. A Four-Membered in Vitro 
Electron-Transport Chain 

Sir: 

Although the formal similarity between in vivo electron-
transport chains and electron-transfer reactions catalyzed by 
an external organic species in solution has been noted,1 the 
latter processes may at best be considered highly abbreviated 
models of the bio systems, for they involve, aside from the metal 
ion centers furnishing the driving force for net reaction, only 
a single catalytic intermediary. We here report expansion of 
the in vitro electron-transfer chain to four members by inclu­
sion of two catalysts, exhibiting a combined action far more 
marked than the sum of their individual effects. 

Table I lists the rates at which Co(en)3
3+ is reduced by Eu2 + 

in the absence of catalysis and in the presence of isonicotin-
amide (IN) alone and methyl viologen (MV) alone, and in the 
presence of both. 

CONH2 

H3CN ®-® Y 
NCH3 

MV 

Table I. Catalyzed Reductions of Co(en)3
3+ by Eu2+, 25 °C 

[Isonicotinamide], 
M [Methyl viologen], M Rate, M s"' X IQ6 " 

O 
0.0127 
O 
0.0127 

O 
O 

5.13X 10-4 

5.13X 10"4 

0.01 
2.3 
7.8 

84 

" Reactions were carried out in 1 M HClO4: [Eu2+], 0.020 M; 
[Co1"], 0.00167 M; [Eu3+], 0.03 M. Reaction progress was monitored 
spectrophotometrically at 465 nm.1 
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Table II. Kinetic Data for the Europium(II) Reduction of Co(en)3
3+, as Catalyzed by Combinations of Isonicotinamide and Methyl 

Viologen, 25 " C 

[Eu2+], MXlO 2 [IN], M X IQ2 [MV], M X IQ4 [Eu3+], M X IQ2 kobsd
b £ca|cd

f 

2.00 0 0 0 0.0008 
2.00 1.27 0 3.00 0.14 
2.00 1.20 5.13 3.00 5.0 5.0 
1.00 1.20 5.13 4.00 2.7 2.6 
3.00 1.20 5.13 3.00 6.9 7.7 
2.00 6.00 5.13 3.00 5.0 5.0 
2.00 1.71 5.13 3.00 5.0 5.0 
2.00 1.20 7.70 3.00 6.9 7.7 
2.00 1.20 5.13 2.00 6.9 7.7 
2.00 1.20 5.13 3.00 5.0 5.0 
2.00 1.20 5.13 4.00 4.0 3.8 
1.33 1.20 2.57 3.00 1.9 1.7 

" Reactions were carried out in 1 M HClO4: [Co(en)3
3+]0, 1-67 X 10~3 M throughout. * Pseudo-first-order rate constants (s_ l X 102) = 

(-(![Co'iiJ/dOtCo1"]-1. ^caicd (in S-1 X 102) = 1.5 X 102[Eu2+][MV][Eu3+]-' (see text). 

The proposed catalytic sequence is 

Eu2 + + IN —n Eu3 + + IN- (1) 

k-i 

IN- + MV ^ k IN + MV- (2) 
A-2 

MV- + Co111 —W Co 2 + + MV (3) 

In earlier studies,1'2 k\ has been estimated as 2.0 M - 1 s_1, k-\ 
as 5 X 105, and k3 as 5 X 104 M - 1 s_ 1 . The reaction of the 
viologen with Eu2 + , and that of radical IN- with Co(en)3

3+ , 
may be neglected in comparison with steps 1 and 3.3 Appli­
cation of the steady-state approximation to radicals IN- and 
MV- leads to the rate expression 

- d [ C o m ] = Jk1Jk2^a[IN] [MV] [Eu2+] [Co111] 
At A:_iA:-2[Eu3+][IN] +Mr 3 [MV][Co 1 1 1 ] ( ) 

+ Zt-IZt3[Eu3+][Co111] 

From the reduction potentials of the two catalysts in this me­
dium (IN, -0 .66 V4-7; MV, -0 .51 V8), ki/k-2 may be cal­
culated to be 330. Assuming that k2, associated with a ther-
modynamically favored electron transfer between two conju­
gated organic species, exceeds 10* M - 1 s - 1 , 9 the first term in 
the denominator of (4) may be shown to predominate when 
Eu2 + is in excess, leading to the simplified expression 

- d [ C o u l ] _ JkI^2Jk3[MV][Eu2+][Co111] 
dt /t_,/t-2[Eu3+] ( ) 

which corresponds algebraically to the observed rate law under 
these conditions. Representative kinetic data are presented in 
Table II; note the zero-order dependence on [IN]. The ratio 
kxk2ki/k-\k-i is calculated to be 0.7 X 102 M - 1 s_1 , which 
may be taken to be in reasonable agreement with our observed 
rate constant, 1.5 X 1 0 2 M - 1 s_ 1 , when the large uncertainty 
in k^k-2 (reflecting the uncertainty in the reduction potential 
for IN) is considered. 

With Co(en)3
3 + in large excess, the second term in the de­

nominator of eq 4 predominates, and the kinetic behavior of 
the reaction approaches that with isonicotinamide alone. 
Moreover, with Eu2 + in deficiency no inhibition by Eu3 + is 
detectable, even when [Eu 3 +] / [MV] = 200, indicating that 
k^Jk-i » 200 or that k2 > 108 M" 1 s"1. 

Both IN- and MV- react rapidly and completely with 

Co(en)3
3+ . The enhanced effectiveness of the two catalysts in 

tandem arises because MV-, the radical with the greater 
steady-state concentration, is generated by Eu2 + (necessarily 
by an outer-sphere path) at the lower specific rate. In effect, 
isonicotinamide, for which an inner sphere path is available 
and almost certainly preferred,10'11 catalyzes the formation 
of MV', the predominant species reacting with Co(III). 

Synergism of this type is to be anticipated with other com­
binations of inner- and outer-sphere catalysts; varieties of both 
kinds have been characterized.1,2 However, the search for an 
analogous three-catalyst system is expected to be less 
straightforward, for the combined effectiveness of the three 
must exceed not only the sum of the individual catalyses, but 
also the action of any member in conjunction with the combi­
nation of the remaining two. 
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